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Recently, considerable progress has been described in the quest
for catalysts that can cross-couple alkyl electrophiles.1 Although
most investigations have focused on reactions of primary electro-
philes, there have also been noteworthy advances in the develop-
ment of catalysts that achieve couplings of secondary alkyl
electrophiles.2,3

For cross-couplings of unsymmetrical secondary electrophiles,
a stereocenter may be produced at the carbon that bears the leaving
group. This stereochemical aspect adds an important new dimension
to these carbon-carbon bond-forming processes, control of which
would greatly increase their utility. In this report, we describe the
first catalytic enantioselective cross-couplings of secondary alkyl
electrophiles (eq 1; DMI) 1,3-dimethyl-2-imidazolidinone).4

In 2003, we reported that Ni(cod)2/(s-Bu)-Pybox catalyzes
Negishi reactions of secondary alkyl bromides and iodides.3a Our
observation that the cross-couplings proceed particularly well in
the presence of (s-Bu)-Pybox clearly opened the door to the
possibility of achieving an asymmetric variant.5 Upon exploring
several different families of secondary alkyl electrophiles, we
obtained promising results withR-bromo amides (for some illustra-
tive data, see eqs 2 and 3). Optimization of the reaction conditions
led to a catalyst system that furnishes the desired product in both
high enantiomeric excess and yield (eq 4).6

This method has proved to be general for catalytic asymmetric
Negishi cross-couplings of a range ofR-bromo amides with an array
of organozinc reagents (Table 1).7 Not only unfunctionalized (entries
1-7) but also functionalized (entries 8-12) organozincs serve as
useful coupling partners, affording the target compounds in very
good enantiomeric excess. Thus, asymmetric carbon-carbon bond
formation proceeds smoothly in the presence of groups such as an
olefin (entry 8), a benzyl ether (entry 9), an acetal (entry 10), an
imide (entry 11), and a nitrile (entry 12).8

Several other observations are worthy of note. First, this catalyst
system is highly selective for coupling anR-bromo amide in the
presence of either an unactivated primary or secondary alkyl
bromide (eq 5). Second, there is no evidence for kinetic resolution
during the catalytic asymmetric cross-coupling (eq 6). Third, the
amide can be converted into other useful functional groups (eq 7).

We have not yet had the opportunity to systematically investigate
the mechanism(s) of the nickel-based catalysts that we have
described for cross-coupling alkyl electrophiles.3 Recently, Vicic
suggested that, for Negishi reactions, carbon-carbon bond forma-

Table 1. Asymmetric Negishi Cross-Couplings of Secondary
R-Bromo Amides with Organozinc Reagents (eq 1; all data are the
average of two experiments)

a Isolated yield.b The coupling was conducted at room temperature.c For
the second run (data given in parentheses), the product was recrystallized,
which leads to an enrichment of the enantiomeric excess of the product.
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tion may proceed via radical-radical coupling.9 In view of the high
enantioselectivity that we observe under the conditions described
in eq 1, we believe that for this system the Vicic mechanism is
unlikely to be operative.

In conclusion, we have developed the first method that achieves
catalytic asymmetric cross-couplings of alkyl electrophiles. These
Ni/(i-Pr)-Pybox-catalyzed reactions of secondaryR-bromo amides
with organozinc reagents are tolerant of an array of functional
groups and generally proceed in good yield and in high enantiomeric
excess. This advance further highlights the potential impact of cross-
couplings of alkyl electrophiles on synthetic organic chemistry.
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